Thursday, 1 December 2011

CORRELATION

  Manoj       Thursday, 1 December 2011

DEFINITION

The Pearson Product-Moment Correlation Coefficient (r), or correlation coefficient for short is a measure of the degree of linear relationship between two variables, usually labeled X and Y. While in regression the emphasis is on predicting one variable from the other, in correlation the emphasis is on the degree to which a linear model may describe the relationship between two variables. In regression the interest is directional, one variable is predicted and the other is the predictor; in correlation the interest is non-directional, the relationship is the critical aspect.
The computation of the correlation coefficient is most easily accomplished with the aid of a statistical calculator. The value of r was found on a statistical calculator during the estimation of regression parameters in the last chapter. Although definitional formulas will be given later in this chapter, the reader is encouraged to review the procedure to obtain the correlation coefficient on the calculator at this time.
The correlation coefficient may take on any value between plus and minus one.
corr20.gif - 1.0 K
The sign of the correlation coefficient (+ , -) defines the direction of the relationship, either positive or negative. A positive correlation coefficient means that as the value of one variable increases, the value of the other variable increases; as one decreases the other decreases. A negative correlation coefficient indicates that as one variable increases, the other decreases, and vice-versa.
Taking the absolute value of the correlation coefficient measures the strength of the relationship. A correlation coefficient of r=.50 indicates a stronger degree of linear relationship than one of r=.40. Likewise a correlation coefficient of r=-.50 shows a greater degree of relationship than one of r=.40. Thus a correlation coefficient of zero (r=0.0) indicates the absence of a linear relationship and correlation coefficients of r=+1.0 and r=-1.0 indicate a perfect linear relationship.

UNDERSTANDING AND INTERPRETING THE CORRELATION COEFFICIENT

The correlation coefficient may be understood by various means, each of which will now be examined in turn.

Scatterplots

The scatterplots presented below perhaps best illustrate how the correlation coefficient changes as the linear relationship between the two variables is altered. When r=0.0 the points scatter widely about the plot, the majority falling roughly in the shape of a circle. As the linear relationship increases, the circle becomes more and more elliptical in shape until the limiting case is reached (r=1.00 or r=-1.00) and all the points fall on a straight line.
A number of scatterplots and their associated correlation coefficients are presented below in order that the student may better estimate the value of the correlation coefficient based on a scatterplot in the associated computer exercise.
r = 1.00
corr30.gif - 2.2 K
r = -.54
corr31.gif - 2.5 K
r = .85
corr32.gif - 2.6 K
r = -.94
corr33.gif - 2.5 K
r = .42
corr34.gif - 2.5 K
r = -.33
corr30.gif - 2.2 K
r = .17
corr31.gif - 2.5 K
r = .39
corr32.gif - 2.6 K

Slope of the Regression Line of z-scores

The correlation coefficient is the slope (b) of the regression line when both the X and Y variables have been converted to z-scores. The larger the size of the correlation coefficient, the steeper the slope. This is related to the difference between the intuitive regression line and the actual regression line discussed above.
This interpretation of the correlation coefficient is perhaps best illustrated with an example involving numbers. The raw score values of the X and Y variables are presented in the first two columns of the following table. The second two columns are the X and Y columns transformed using the z-score transformation.
corr21.gif - 1.2 K
That is, the mean is subtracted from each raw score in the X and Y columns and then the result is divided by the sample standard deviation. The table appears as follows:
X
Y
zX
zY
 
12
33
-1.07
-0.61
 
15
31
-0.07
-1.38
 
19
35
-0.20
0.15
 
25
37
0.55
.92
 
32
37
1.42
.92
         
 
20.60
34.60
0.0
0.0
xbar.gif - 0.8 K=
8.02
2.61
1.0
1.0
There are two points to be made with the above numbers: (1) the correlation coefficient is invariant under a linear transformation of either X and/or Y, and (2) the slope of the regression line when both X and Y have been transformed to z-scores is the correlation coefficient.
Computing the correlation coefficient first with the raw scores X and Y yields r=0.85. Next computing the correlation coefficient with zX and zY yields the same value, r=0.85. Since the z-score transformation is a special case of a linear transformation (X' = a + bX), it may be proven that the correlation coefficient is invariant (doesn't change) under a linear transformation of either X and/or Y. The reader may verify this by computing the correlation coefficient using X and zY or Y and zX. What this means essentially is that changing the scale of either the X or the Y variable will not change the size of the correlation coefficient, as long as the transformation conforms to the requirements of a linear transformation.
The fact that the correlation coefficient is the slope of the regression line when both X and Y have been converted to z-scores can be demonstrated by computing the regression parameters predicting zX from zY or zY from zX. In either case the intercept or additive component of the regression line (a) will be zero or very close, within rounding error. The slope (b) will be the same value as the correlation coefficient, again within rounding error. This relationship may be illustrated as follows:
corr22.gif - 1.1 K

Variance Interpretation

The squared correlation coefficient (r2) is the proportion of variance in Y that can be accounted for by knowing X. Conversely, it is the proportion of variance in X that can be accounted for by knowing Y.
One of the most important properties of variance is that it may be partitioned into separate additive parts. For example, consider shoe size. The theoretical distribution of shoe size may be presented as follows:
corr40.gif - 3.1 K
If the scores in this distribution were partitioned into two groups, one for males and one for females, the distributions could be represented as follows:
If one knows the sex of an individual, one knows something about that person's shoe size, because the shoe sizes of males are on the average somewhat larger than females. The variance within each distribution, male and female, is variance that cannot be predicted on the basis of sex, or error variance, because if one knows the sex of an individual, one does not know exactly what that person's shoe size will be.
Rather than having just two levels the X variable will usually have many levels. The preceding argument may be extended to encompass this situation. It can be shown that the total variance is the sum of the variance that can be predicted and the error variance, or variance that cannot be predicted. This relationship is summarized below:
corr23.gif - 1.5 K
The correlation coefficient squared is equal to the ratio of predicted to total variance:
corr24.gif - 1.2 K
This formula may be rewritten in terms of the error variance, rather than the predicted variance as follows:
corr25.gif - 1.9 K
The error variance, s2ERROR, is estimated by the standard error of estimate squared, s2Y.X, discussed in the previous chapter. The total variance (s2TOTAL) is simply the variance of Y, s2Y.The formula now becomes:
corr26.gif - 1.1 K
Solving for sY.X, and adding a correction factor (N-1)/(N-2), yields the computational formula for the standard error of estimate,
corr27.gif - 1.4 K
This captures the essential relationship between the correlation coefficient, the variance of Y, and the standard error of estimate. As the standard error of estimate becomes large relative to the total variance, the correlation coefficient becomes smaller. Thus the correlation coefficient is a function of both the standard error of estimate and the total variance of Y. The standard error of estimate is an absolute measure of the amount of error in prediction, while the correlation coefficient squared is a relative measure, relative to the total variance.
logoblog

Thanks for reading CORRELATION

Previous
« Prev Post

No comments:

Post a Comment