Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, 27 August 2017

First four moments of the Poisson distribution

  Manoj       Sunday, 27 August 2017
First four moments of Poisson distribution
The r th moment about origin is given by μr=E(xr)=x=0eλλxx! When r=1 we get μ1=x=0xeλλxx! =eλλx=0xλx1x(x1)! =λeλ[1+λ+λ22!+λ33!+] =λeλ.eλ μ1=E(X)=λ Hence mean of the Poisson distribution is lambda When r=2 we get μ2=x=0x2eλλxx! =x=0{x(x1)+x}eλλxx! =x=0x(x1)eλλxx!+x=0xeλλxx! =x=0x(x1)eλλxx(x1)(x2)!+x=0xeλλxx(x1)! =x=0eλλx(x2)!+x=0eλλx(x1)! =eλλ2x=0λx2(x2)!+E(X) =λ2eλ[1+λ+λ22!+λ33!+]+λ =λ2eλ.eλ+λ μ2=E(X2)=λ2+λ Hence mean of the Poisson distribution is μ2=μ2μ12=λ2+λλ2=λ Thus the mean and the variance of Poisson distribution are same i.e $\lambda =\lambda $. When r=3 we get μ3=x=0x3eλλxx! =x=0{x(x1)(x2)+3x(x1)+x}eλλxx! =x=0x(x1)(x2)eλλxx!+3x=0x(x1)eλλxx!+x=0xeλλxx! =x=0x(x1)(x2)eλλxx(x1)(x2)(x3)!+x=0x(x1)eλλxx(x1)(x2)!+x=0xeλλxx(x1)! =x=0eλλx(x3)!+x=0eλλx(x2)!+x=0eλλx(x1)! =λ3x=0eλλx3(x3)!+3λ2x=0eλλx2(x2)!+λx=0eλλx1(x1)! =λ2eλ[1+λ+λ22!+λ33!+]++3λ2eλ[1+λ+λ22!+λ33!+]+λ eλ[1+λ+λ22!+λ33!+] =λ3eλ.eλ+3λ2eλ.eλ+λ eλ.eλ =λ3+3λ2+λ  μ2=E(X2)=λ3+3λ2+λ  Hence the third central moment of the Poisson distribution is μ3=μ33μ2μ1+2μ13=λ2+λλ2=λ When r=4 we get μ4=x=0x4eλλxx! =x=0{x(x1)(x2)(x3)+6x(x1)(x2)+7x(x1)+x}eλλxx! =x=0x(x1)(x2)(x3)eλλxx!+6x=0x(x1)(x2)eλλxx!+7x=0x(x1)eλλxx!+x=0xeλλxx! =x=0x(x1)(x2)(x3)eλλxx(x1)(x2)(x3)(x4)!+6x=0x(x1)(x2)eλλxx(x1)(x2)(x3)!+7x=0x(x1)eλλxx(x1)(x2)!+x=0xeλλxx(x1)! =x=0eλλx(x4)!+6x=0eλλx(x3)!+7x=0eλλx(x2)!+x=0eλλx(x1)! =λ4x=0eλλx4(x4)!+6λ3x=0eλλx3(x3)!+7λ2x=0eλλx2(x2)!+λx=0eλλx1(x1)! =λ4eλ[1+λ+λ22!+λ33!+]+6λ3eλ[1+λ+λ22!+λ33!+]+7λ2 eλ[1+λ+λ22!+λ33!+]+λ eλ[1+λ+λ22!+λ33!+] =λ4eλ.eλ+6λ3eλ.eλ+7λ2 eλ.eλ+λ eλ.eλ =λ4+6λ3+7λ2+λ  μ4=λ4+6λ3+7λ2+λ  Hence the third central moment of the Poisson distribution is μ3=μ44μ3μ1+6μ2μ123μ14=3λ2+λ The indices of skewness and kurtosis of Poisson distribution are given respectively, by α3=β1=(μ23μ32)12=(λ2λ3)12=1λ and α4=β4=(μ4μ22)=(3λ2+λλ2)=3+1λ
logoblog

Thanks for reading First four moments of the Poisson distribution

No comments:

Post a Comment