The r th moment about origin is given by μ′r=E(xr)=∞∑x=0e−λλxx! When r=1 we get μ′1=∞∑x=0xe−λλxx! =e−λλ∞∑x=0xλx−1x(x−1)! =λe−λ[1+λ+λ22!+λ33!+…] =λe−λ.eλ μ′1=E(X)=λ Hence mean of the Poisson distribution is lambda When r=2 we get μ′2=∞∑x=0x2e−λλxx! =∞∑x=0{x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =e−λλ2∞∑x=0λx−2(x−2)!+E(X) =λ2e−λ[1+λ+λ22!+λ33!+…]+λ =λ2e−λ.eλ+λ μ′2=E(X2)=λ2+λ Hence mean of the Poisson distribution is μ2=μ′2−μ′12=λ2+λ−λ2=λ Thus the mean and the variance of Poisson distribution are same i.e $\lambda =\lambda $. When r=3 we get μ′3=∞∑x=0x3e−λλxx! =∞∑x=0{x(x−1)(x−2)+3x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx!+3∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−3)!+∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ3∞∑x=0e−λλx−3(x−3)!+3λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ2e−λ[1+λ+λ22!+λ33!+…]++3λ2e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ3e−λ.eλ+3λ2e−λ.eλ+λ e−λ.eλ =λ3+3λ2+λ μ′2=E(X2)=λ3+3λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′3−3μ′2μ′1+2μ′13=λ2+λ−λ2=λ When r=4 we get μ′4=∞∑x=0x4e−λλxx! =∞∑x=0{x(x−1)(x−2)(x−3)+6x(x−1)(x−2)+7x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx!+6∞∑x=0x(x−1)(x−2)e−λλxx!+7∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx(x−1)(x−2)(x−3)(x−4)!+6∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+7∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−4)!+6∞∑x=0e−λλx(x−3)!+7∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ4∞∑x=0e−λλx−4(x−4)!+6λ3∞∑x=0e−λλx−3(x−3)!+7λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ4e−λ[1+λ+λ22!+λ33!+…]+6λ3e−λ[1+λ+λ22!+λ33!+…]+7λ2 e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ4e−λ.eλ+6λ3e−λ.eλ+7λ2 e−λ.eλ+λ e−λ.eλ =λ4+6λ3+7λ2+λ μ′4=λ4+6λ3+7λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′4−4μ′3μ′1+6μ′2μ′12−3μ′14=3λ2+λ The indices of skewness and kurtosis of Poisson distribution are given respectively, by α3=√β1=(μ23μ32)12=(λ2λ3)12=1√λ and α4=β4=(μ4μ22)=(3λ2+λλ2)=3+1λ
Sunday, 27 August 2017
First four moments of the Poisson distribution
Manoj Sunday, 27 August 2017
First four moments of Poisson distribution
The r th moment about origin is given by μ′r=E(xr)=∞∑x=0e−λλxx! When r=1 we get μ′1=∞∑x=0xe−λλxx! =e−λλ∞∑x=0xλx−1x(x−1)! =λe−λ[1+λ+λ22!+λ33!+…] =λe−λ.eλ μ′1=E(X)=λ Hence mean of the Poisson distribution is lambda When r=2 we get μ′2=∞∑x=0x2e−λλxx! =∞∑x=0{x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =e−λλ2∞∑x=0λx−2(x−2)!+E(X) =λ2e−λ[1+λ+λ22!+λ33!+…]+λ =λ2e−λ.eλ+λ μ′2=E(X2)=λ2+λ Hence mean of the Poisson distribution is μ2=μ′2−μ′12=λ2+λ−λ2=λ Thus the mean and the variance of Poisson distribution are same i.e $\lambda =\lambda $. When r=3 we get μ′3=∞∑x=0x3e−λλxx! =∞∑x=0{x(x−1)(x−2)+3x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx!+3∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−3)!+∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ3∞∑x=0e−λλx−3(x−3)!+3λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ2e−λ[1+λ+λ22!+λ33!+…]++3λ2e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ3e−λ.eλ+3λ2e−λ.eλ+λ e−λ.eλ =λ3+3λ2+λ μ′2=E(X2)=λ3+3λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′3−3μ′2μ′1+2μ′13=λ2+λ−λ2=λ When r=4 we get μ′4=∞∑x=0x4e−λλxx! =∞∑x=0{x(x−1)(x−2)(x−3)+6x(x−1)(x−2)+7x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx!+6∞∑x=0x(x−1)(x−2)e−λλxx!+7∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx(x−1)(x−2)(x−3)(x−4)!+6∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+7∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−4)!+6∞∑x=0e−λλx(x−3)!+7∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ4∞∑x=0e−λλx−4(x−4)!+6λ3∞∑x=0e−λλx−3(x−3)!+7λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ4e−λ[1+λ+λ22!+λ33!+…]+6λ3e−λ[1+λ+λ22!+λ33!+…]+7λ2 e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ4e−λ.eλ+6λ3e−λ.eλ+7λ2 e−λ.eλ+λ e−λ.eλ =λ4+6λ3+7λ2+λ μ′4=λ4+6λ3+7λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′4−4μ′3μ′1+6μ′2μ′12−3μ′14=3λ2+λ The indices of skewness and kurtosis of Poisson distribution are given respectively, by α3=√β1=(μ23μ32)12=(λ2λ3)12=1√λ and α4=β4=(μ4μ22)=(3λ2+λλ2)=3+1λ
The r th moment about origin is given by μ′r=E(xr)=∞∑x=0e−λλxx! When r=1 we get μ′1=∞∑x=0xe−λλxx! =e−λλ∞∑x=0xλx−1x(x−1)! =λe−λ[1+λ+λ22!+λ33!+…] =λe−λ.eλ μ′1=E(X)=λ Hence mean of the Poisson distribution is lambda When r=2 we get μ′2=∞∑x=0x2e−λλxx! =∞∑x=0{x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =e−λλ2∞∑x=0λx−2(x−2)!+E(X) =λ2e−λ[1+λ+λ22!+λ33!+…]+λ =λ2e−λ.eλ+λ μ′2=E(X2)=λ2+λ Hence mean of the Poisson distribution is μ2=μ′2−μ′12=λ2+λ−λ2=λ Thus the mean and the variance of Poisson distribution are same i.e $\lambda =\lambda $. When r=3 we get μ′3=∞∑x=0x3e−λλxx! =∞∑x=0{x(x−1)(x−2)+3x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx!+3∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−3)!+∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ3∞∑x=0e−λλx−3(x−3)!+3λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ2e−λ[1+λ+λ22!+λ33!+…]++3λ2e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ3e−λ.eλ+3λ2e−λ.eλ+λ e−λ.eλ =λ3+3λ2+λ μ′2=E(X2)=λ3+3λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′3−3μ′2μ′1+2μ′13=λ2+λ−λ2=λ When r=4 we get μ′4=∞∑x=0x4e−λλxx! =∞∑x=0{x(x−1)(x−2)(x−3)+6x(x−1)(x−2)+7x(x−1)+x}e−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx!+6∞∑x=0x(x−1)(x−2)e−λλxx!+7∞∑x=0x(x−1)e−λλxx!+∞∑x=0xe−λλxx! =∞∑x=0x(x−1)(x−2)(x−3)e−λλxx(x−1)(x−2)(x−3)(x−4)!+6∞∑x=0x(x−1)(x−2)e−λλxx(x−1)(x−2)(x−3)!+7∞∑x=0x(x−1)e−λλxx(x−1)(x−2)!+∞∑x=0xe−λλxx(x−1)! =∞∑x=0e−λλx(x−4)!+6∞∑x=0e−λλx(x−3)!+7∞∑x=0e−λλx(x−2)!+∞∑x=0e−λλx(x−1)! =λ4∞∑x=0e−λλx−4(x−4)!+6λ3∞∑x=0e−λλx−3(x−3)!+7λ2∞∑x=0e−λλx−2(x−2)!+λ∞∑x=0e−λλx−1(x−1)! =λ4e−λ[1+λ+λ22!+λ33!+…]+6λ3e−λ[1+λ+λ22!+λ33!+…]+7λ2 e−λ[1+λ+λ22!+λ33!+…]+λ e−λ[1+λ+λ22!+λ33!+…] =λ4e−λ.eλ+6λ3e−λ.eλ+7λ2 e−λ.eλ+λ e−λ.eλ =λ4+6λ3+7λ2+λ μ′4=λ4+6λ3+7λ2+λ Hence the third central moment of the Poisson distribution is μ3=μ′4−4μ′3μ′1+6μ′2μ′12−3μ′14=3λ2+λ The indices of skewness and kurtosis of Poisson distribution are given respectively, by α3=√β1=(μ23μ32)12=(λ2λ3)12=1√λ and α4=β4=(μ4μ22)=(3λ2+λλ2)=3+1λ
Thanks for reading First four moments of the Poisson distribution
No comments:
Post a Comment