Saturday 12 May 2012

Least-squares estimation and related techniques

  Manoj       Saturday 12 May 2012
  • Ordinary least squares (OLS) is the simplest and thus most common estimator. It is conceptually simple and computationally straightforward. OLS estimates are commonly used to analyze both experimental and observational data.
    The OLS method minimizes the sum of squared residuals, and leads to a closed-form expression for the estimated value of the unknown parameter β:
    \hat\boldsymbol\beta = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y}
 = \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i \mathbf{x}^{\rm T}_i \,\big)^{-1}
 \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i y_i \,\big)
    The estimator is unbiased and consistent if the errors have finite variance and are uncorrelated with the regressors.
    
 \operatorname{E}[\,\mathbf{x}_i\varepsilon_i\,] = 0.
    It is also efficient under the assumption that the errors have finite variance and are homoscedastic, meaning that E[εi2|xi] does not depend on i. The condition that the errors are uncorrelated with the regressors will generally be satisfied in an experiment, but in the case of observational data, it is difficult to exclude the possibility of an omitted covariate z that is related to both the observed covariates and the response variable. The existence of such a covariate will generally lead to a correlation between the regressors and the response variable, and hence to an inconsistent estimator of β. The condition of homoscedasticity can fail with either experimental or observational data. If the goal is either inference or predictive modeling, the performance of OLS estimates can be poor if multicollinearity is present, unless the sample size is large.
    In simple linear regression, where there is only one regressor (with a constant), the OLS coefficient estimates have a simple form that is closely related to the correlation coefficient between the covariate and the response.

  • Generalized least squares (GLS) is an extension of the OLS method, that allows efficient estimation of β when either heteroscedasticity, or correlations, or both are present among the error terms of the model, as long as the form of heteroscedasticity and correlation is known independently of the data. To handle heteroscedasticity when the error terms are uncorrelated with each other, GLS minimizes a weighted analogue to the sum of squared residuals from OLS regression, where the weight for the ith case is inversely proportional to var(εi). This special case of GLS is called “weighted least squares”. The GLS solution to estimation problem is
    
 \hat\boldsymbol\beta = (\mathbf{X}^{\rm T}\boldsymbol\Omega^{-1}\mathbf{X})^{-1}\mathbf{X}^{\rm T}\boldsymbol\Omega^{-1}\mathbf{y},
    where Ω is the covariance matrix of the errors. GLS can be viewed as applying a linear transformation to the data so that the assumptions of OLS are met for the transformed data. For GLS to be applied, the covariance structure of the errors must be known up to a multiplicative constant.

  • Percentage least squares focuses on reducing percentage errors, which is useful in the field of forecasting or time series analysis. It is also useful in situations where the dependent variable has a wide range without constant variance, as here the larger residuals at the upper end of the range would dominate if OLS were used. When the percentage or relative error is normally distributed, least squares percentage regression provides maximum likelihood estimates. Percentage regression is linked to a multiplicative error model, whereas OLS is linked to models containing an additive error term.

  • Iteratively reweighted least squares (IRLS) is used when heteroscedasticity, or correlations, or both are present among the error terms of the model, but where little is known about the covariance structure of the errors independently of the data. In the first iteration, OLS, or GLS with a provisional covariance structure is carried out, and the residuals are obtained from the fit. Based on the residuals, an improved estimate of the covariance structure of the errors can usually be obtained. A subsequent GLS iteration is then performed using this estimate of the error structure to define the weights. The process can be iterated to convergence, but in many cases, only one iteration is sufficient to achieve an efficient estimate of β.

  • Instrumental variables regression (IV) can be performed when the regressors are correlated with the errors. In this case, we need the existence of some auxiliary instrumental variables zi such that E[ziεi] = 0. IfZ is the matrix of instruments, then the estimator can be given in closed form as
    
 \hat\boldsymbol\beta = (\mathbf{X}^{\rm T}\mathbf{Z}(\mathbf{Z}^{\rm T}\mathbf{Z})^{-1}\mathbf{Z}^{\rm T}\mathbf{X})^{-1}\mathbf{X}^{\rm T}\mathbf{Z}(\mathbf{Z}^{\rm T}\mathbf{Z})^{-1}\mathbf{Z}^{\rm T}\mathbf{y}

  • Optimal instruments regression is an extension of classical IV regression to the situation where E[εi|zi] = 0.

  • Total least squares (TLS)  is an approach to least squares estimation of the linear regression model that treats the covariates and response variable in a more geometrically symmetric manner than OLS. It is one approach to handling the "errors in variables" problem, and is sometimes used when the covariates are assumed to be error-free.

Maximum-likelihood estimation and related techniques

  • Maximum likelihood estimation can be performed when the distribution of the error terms is known to belong to a certain parametric family ƒθ of probability distributions. When fθ is a normal distribution with mean zero and variance θ, the resulting estimate is identical to the OLS estimate. GLS estimates are maximum likelihood estimates when ε follows a multivariate normal distribution with a known covariance matrix.
  • Ridge regression, and other forms of penalized estimation such as Lasso regression, deliberately introduce bias into the estimation of β in order to reduce the variability of the estimate. The resulting estimators generally have lower mean squared error than the OLS estimates, particularly when multicollinearity is present. They are generally used when the goal is to predict the value of the response variable y for values of the predictors x that have not yet been observed. These methods are not as commonly used when the goal is inference, since it is difficult to account for the bias.
  • Least absolute deviation (LAD) regression is a robust estimation technique in that it is less sensitive to the presence of outliers than OLS (but is less efficient than OLS when no outliers are present). It is equivalent to maximum likelihood estimation under a Laplace distribution model for ε.
  • Adaptive estimation. If we assume that error terms are independent from the regressors \varepsilon_i \perp \mathbf{x}_i, the optimal estimator is the 2-step MLE, where the first step is used to non-parametrically estimate the distribution of the error term.

Other estimation techniques

  • Bayesian linear regression applies the framework of Bayesian statistics to linear regression. (See also Bayesian multivariate linear regression.) In particular, the regression coefficients β are assumed to be random variables with a specified prior distribution. The prior distribution can bias the solutions for the regression coefficients, in a way similar to (but more general than) ridge regression or lasso regression. In addition, the Bayesian estimation process produces not a single point estimate for the "best" values of the regression coefficients but an entire posterior distribution, completely describing the uncertainty surrounding the quantity. This can be used to estimate the "best" coefficients using the mean, mode, median, any quantile (see quantile regression), or any other function of the posterior distribution.
  • Quantile regression focuses on the conditional quantiles of y given X rather than the conditional mean of y given X. Linear quantile regression models a particular conditional quantile, often the conditional median, as a linear function βTx of the predictors.
  • Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure. Common applications of mixed models include analysis of data involving repeated measurements, such as longitudinal data, or data obtained from cluster sampling. They are generally fit as parametric models, using maximum likelihood or Bayesian estimation. In the case where the errors are modeled as normal random variables, there is a close connection between mixed models and generalized least squares. Fixed effects estimation is an alternative approach to analyzing this type of data.
  • Principal component regression (PCR) is used when the number of predictor variables is large, or when strong correlations exist among the predictor variables. This two-stage procedure first reduces the predictor variables using principal component analysis then uses the reduced variables in an OLS regression fit. While it often works well in practice, there is no general theoretical reason that the most informative linear function of the predictor variables should lie among the dominant principal components of the multivariate distribution of the predictor variables. The partial least squares regression is the extension of the PCR method which does not suffer from the mentioned deficiency.
  • Least-angle regression  is an estimation procedure for linear regression models that was developed to handle high-dimensional covariate vectors, potentially with more covariates than observations.
  • The Theil–Sen estimator is a simple robust estimation technique that choose the slope of the fit line to be the median of the slopes of the lines through pairs of sample points. It has similar statistical efficiency properties to simple linear regression but is much less sensitive to outliers.
  • Other robust estimation techniques, including the α-trimmed mean approach, and L-, M-, S-, and R-estimators have been introduced.
logoblog

Thanks for reading Least-squares estimation and related techniques

Previous
« Prev Post

No comments:

Post a Comment